
Object-Oriented Design

 Dr. Barry Wittman
 Not Dr. Barry Whitman
 Education:
 PhD and MS in Computer Science, Purdue University
 BS in Computer Science, Morehouse College

 Hobbies:
 Reading, writing
 Enjoying ethnic cuisine
 DJing
 Lockpicking
 Stand-up comedy

 E-mail: wittman1@otterbein.edu
 Office: The Point 105
 Phone: (614) 823-2944
 Office hours: MWF 9:00 – 10:15 a.m.,

MWF 3:00 – 5:00 p.m.,
TR 9:00 – 9:55 a.m.,
TR 2:00 – 5:00 p.m.,
and by appointment

 Website:
http://faculty.otterbein.edu/wittman1/

82%

3% 6%
6%

3%
Major

Computer Science

Business Analytics

Mathematics

Physics

Undeclared

 What's the purpose of this class?
 What do you want to get out of it?
 Do you want to be here?

 Barry Wittman, Aditya Mathur, and Tim
Korb

 Start Concurrent: An Introduction to
Problem Solving in Java with a Focus on
Concurrency
 Available: https://start-concurrent.github.io/

https://start-concurrent.github.io/

 The book's not bad
 At least it's free
 Your feedback is highly valued for the next edition

 I highly encourage you to read it
 However, computer science is very much an applied science
 Reading the book is not enough
 You should be programming every day (or maybe every other

day) to master the concepts

 Designing better, more reusable code
 More complex algorithms
 Testing code
 Features of Java we will focus on:
 Interfaces
 Inheritance
 Exceptions
 Graphical user interfaces (GUIs)
 Recursion
 File and network I/O
 Java Collections Framework (JCF)
 Regular expressions

 For more information, visit the webpage:
http://faculty.otterbein.edu/wittman1/comp2000

 The webpage will contain:
 The most current schedule
 Notes available for download
 Reminders about projects and exams
 Syllabus (you can request a printed copy if you like)
 Detailed policies and guidelines

 Piazza will allow for discussion and questions about the projects:
https://piazza.com/otterbein/spring2020/comp2000

 35% of your grade will be five equally weighted projects
 Each will focus on a different major area from the course:
 Inheritance
 GUI
 Recursion
 Linked lists (and networking)
 Extensive library use

 You will work on each project in two-person teams

 All projects are done in teams of two
 You may pick your partners
 But you have to have a different partner for each project!
 Use Blackboard to form teams

 Projects must be uploaded to Blackboard
(https://otterbein.blackboard.com/)

 Projects must be uploaded to Blackboard before the deadline
 Do not put projects in your public directories
 Late projects will not be accepted
 Exception: Each person will have 3 grace days
 You can use these grace days together or separately as extensions for your

projects
 You must inform me before the deadline that you are going to use grace

days
 If two people in a team don't have the same number of grace days, the

number of days they will have available will be the maximum of those
remaining for either teammate

 Assignments that don't compile get 0 points

In-class Programming Exercises

 15% of your grade will be based around programming labs
 Labs are on Tuesdays and Thursdays
 15 of these labs will focus on the solution of a problem with a

graded exercise
 Work should be done individually, but the goal is to learn, and

I will help everyone
 The remaining lab days are to discuss course material and

work on team projects
 You are expected to attend all lab days

 5% of your grade will be pop quizzes
 These quizzes will be based on material covered in the

previous one or two lectures
 They will be graded leniently
 They are useful for these reasons:

1. Informing me of your understanding
2. Feedback to you about your understanding
3. Easy points for you
4. Attendance

 There will be two equally weighted in-class exams totaling
30% of your final grade
 Exam 1: 02/10/2020
 Exam 2: 03/23/2020

 The final exam will be worth 15% of your grade
 Final: 10:15 a.m. – 12:15 p.m.

04/27/2020

 Conceptual portion
 Multiple choice and short answer

 Programming portion
 Short programming problems you will write code for

Week Starting Topics Chapters Notes

1 01/13/20 Java Recap 3 - 9
2 01/20/20 Interfaces 10 MLK Day
3 01/27/20 Inheritance 11 and 17
4 02/03/20 Exceptions 12 Project 1 Due
5 02/10/20 GUI 7 and 15 Exam 1
6 02/17/20 More GUI 15
7 02/24/20 Recursion 18 Project 2 Due

03/02/20 Spring Break
8 03/09/20 Files 20
9 03/16/20 Network I/O 21 Project 3 Due

10 03/23/20 Linked Lists 18 Exam 2
11 03/30/20 JCF 18 Project 4 Due
12 04/06/20 UML, design, and testing 16 Good Friday
13 04/13/20 Regular Expressions Notes
14 04/20/20 Review All Project 5 Due

 Project 1: 7% Tentatively due 02/07/2020

 Project 2: 7% Tentatively due 02/28/2020

 Project 3: 7% Tentatively due 03/20/2020

 Project 4: 7% Tentatively due 04/03/2020

 Project 5: 7% Tentatively due 04/24/2020

35% •Five projects

15% •Labs (in-class programming)

5% •Quizzes

30% •Two equally weighted midterm exams

15% •Final exam

A 93-100 B- 80-82 D+ 67-69

A- 90-92 C+ 77-79 D 60-66

B+ 87-89 C 73-76 F 60-62

B 83-86 C- 70-72

 You are expected to attend class
 You are expected to have read the material we are going to

cover before class
 Missed quizzes cannot be made up
 Exams and labs must be made up before the scheduled time,

for excused absences

 I hate having a slide like this
 I ask for respect for your classmates and for me
 You are smart enough to figure out what that means
 A few specific points:
 Silence communication devices
 Don't play with your phones
 Don't use the computers in class unless specifically told to
 No food or drink in the lab

 We will be doing a lot of work on the computers together
 However, students are always tempted to surf the Internet,

etc.
 Research shows that it is nearly impossible to do two things at

the same time (e.g. use Facebook and listen to a lecture)
 For your own good, I will enforce this by taking 1% of your

final grade every time I catch you playing on your phones or
using your computer for anything other than course exercises

 Don't cheat
 First offense:
 I will give you a zero for the assignment, then lower your final letter grade

for the course by one full grade
 Second offense:
 I will fail you for the course and try to kick you out of Otterbein

 Refer to the syllabus for the school's policy
 Ask me if you have questions or concerns
 You are not allowed to look at another student's code, except

for group members in group projects (and after the project is
turned in)

 I will use tools that automatically test code for similarity

 Must compile
 If your program does not compile, it will score zero points

 Must be handed in on time
 If your program is late (and grace days are not available), it will score

zero points
 Must be done within your team
 If I can ascertain that code from one team's project appears in

another team's project, both teams will score zero points
 All students will also have a full letter grade reduction at the end of

the semester

 If you have a documented learning difference please contact
Kera McClain Manley, the Disability Services Coordinator, to
arrange for whatever assistance you need. The Disability
Services is located in Room #13 on the second floor of the
Library in the Academic Support Center. You are welcome to
consult with me privately to discuss your specific needs. For
more information, contact Kera at kmanley@otterbein.edu,
(614) 823-1618 or visit Disability Services.

 Don't ask questions
 Don't come to office hours
 Don't ask for help
 Treat education as a passive experience
 Are happy when a class is easy

 In other words, they act as if college is high school

 Ask questions
 Come to office hours
 Ask for help
 Actively pursue all the knowledge and skills they can
 Are angry when a class is easy

Read textbook
before class

Participate in
class and ask

questions

Practice
programming
what we talk

about

Work on labs and
projects

Come to exams
prepared

Come to class
without reading

anything

Ask no questions
in class

Don't practice at
home

Finish the
projects without
understanding

them

Skim the
chapters before

the exam

Flowchart for success:

Flowchart for failure:

 Variables are used to store data in Java
 All variables must be declared:

 When a variable is declared, it can also, optionally, be
assigned at the same time:

int value;

double inches = 4.96;

 All variables have a type, which comes before the name of the
variable in the declaration:

 Unlike dynamic languages like Python or JavaScript, the type of a
variable never changes

 Types determine:
 Legal values you can put in a variable (like integers or text)
 Operations you can do on those variables (like addition or concatenation)

 Types come in two flavors: primitive types and reference types

int value;

 Java has 8 primitive types:
Type Bytes Range Purpose

Integer

byte 1 -127 – 128 Tiny integers

char 2 Many Unicode characters Characters

short 2 -32,768 – 32,767 Small integers

int 4 -2,147,483,648 – 2,147,483,647 Normal integers

long 8 -9,223,372,036,854,775,808 –
9,223,372,036,854,775,807

Large integers

Floating-point
float 4 (±) 1.4 × 10-45 – 3.4 × 1038 Low precision math

double 8 (±) 4.9 × 10-324 – 1.8 × 10308 High precision math

Other boolean true, false Logic

 Java has relatively strong typing
 Understand why you're making a cast, and try not to make casts for

no reason
 Remember that all the primitive numerical types in Java are

signed
 Strange things can happen

byte x = -128;
x *= -1;
System.out.println(x); //output?

 The integer types only have the values in the range listed
 No other values are possible, certainly not null
 The double and float types have a few special values:

float double Meaning

Float.NaN Double.NaN Not a representable number, such as
the square root of a negative number

Float.NEGATIVE_INFINITY Double.NEGATIVE_INFINITY Too negative of a value, larger than can
be represented, such as -5.0/0.0

Float.POSITIVE_INFINITY Double.POSITIVE_INFINITY Too positive of a value, larger than can
be represented, such as 7.0/0.0

 + adds
 - subtracts
 * multiplies
 / divides (integer division for int type and fractional parts for
double type)

 % finds the remainder
 Order of operations holds, and parentheses can be used to

clarify

 Java has a number of shortcuts for common operations

Shortcut Meaning Shortcut Meaning
x += y; x = x + y; x++; x = x + 1; (return old value)
x -= y; x = x - y; ++x; x = x + 1; (return new value)
x *= y; x = x * y; x--; x = x – 1; (return old value)
x /= y; x = x / y; --x; x = x – 1; (return new value)
x %= y; x = x % y;

 These shortcuts are almost the same as combinations of other
operators, but they don't have the same type-checking:

 And know what you're doing with ++:

int i = 0;
while(i < 10)
i += 0.1; //legal but crazy

int i = 0;
i = i++; //legal but crazy
i = ++i; //legal, crazy, different result

 Come to lab tomorrow (even though we won't have a graded
assignment) to refamiliarize yourself with Eclipse and make
sure you can log in

 On Wednesday, we'll review:
 Selection
 Loops
 Arrays
 Static methods

 Review Chapters 3 – 8 (except for 7)

	COMP 2000
	Who am I?
	How can you reach me?
	Who are you?
	Why are we here?
	Course Overview
	Textbook
	A note about the book…
	Course focus
	More information
	Projects
	Five projects
	Teams
	Turning in projects
	Labs
	Labs
	Quizzes
	Pop Quizzes
	Exams
	Exams
	Exam format
	Course Schedule
	Tentative schedule
	Project schedule
	Policies
	Grading breakdown
	Grading scale
	Attendance
	R-E-S-P-E-C-T
	Computer usage
	Academic dishonesty
	Programming projects
	Learning Differences
	How to Succeed in this Course
	Bad students…
	Good students…
	Flowcharts for COMP 2000
	Java Refresher
	Variables
	Types
	Primitive types
	Primitive type ranges
	Special double values
	Basic math operations
	Shortcut notation
	Shortcut notation
	Upcoming
	Next time…
	Reminders

